About me

About me

YongJun Park

Education

Research Interests

  • Computer Vision
    • 2D Object Detection
    • 3D Object Detection
    • Image Generation
    • Style Transfer
    • Image to Image Translation
    • Image Classification
    • Face Recognition
    • Contrastive Learning
    • Self-supervised Learning
    • PreText Learning
  • Natural Language Processing
    • Prompt Learning
  • Reinforcement Learning

Publication Papers

  • J. U. Jung, S. H. Lee, Y. J. Park, J. C. Park, S. B. Son, and H. S. Oh “Unified Negative Pair Generation toward the Ideal Verification Space for Face Recognition”. In British Machine Vision Conference (BMVC), 2022.
  • J. C. Park, S. B. Son, S. H. Lee, J. U. Jung, Y. J. Park, and H. S. Oh “Deep Ensemble based Object Detection from Aerial Images,” Journal of Institute of Control, Robotics and Systems (in Korean), vol.27, no.12, pp.944-952, 2021.
  • J. U. Jung, S. B. Son, J. C. Park, Y. J. Park, S. H. Lee and H. S. Oh “MixFace: Improving Face Verification Focusing on Fine-grained Conditions,” arXiv preprint arXiv:2111.01717, 2021.
  • S. B. Son, S. H. Lee, J. C. Park, J. U. Jung, Y. J. Park and H. S. Oh “Patch Image Merge System using Deep Neural Network for Chip Defect Analysis,” Journal of Institute of Control, Robotics and Systems (in Korean), vol.27, no.8, pp.528-534, 2021.

Patent

  • 스타일 전이를 이용한 실시간 작품 생성 시스템 및 그 방법(Style transfer used Real-time work producing system and its method)/10-2022-0034775
  • 딥러닝 기반의 MLCC 데이터에 특화된 전이 학습 방법 및 장치(Transfer learning method and device specialized for MLCC data based on deep learning)/10-2021-0178855
  • 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템 및 방법(Deep learning-based MLCC stacked alignment inspection system and method)/10-2021-0151239

Experience

Study

  1. (2021.06 ~ 2021.10) CS231A: Computer Vision, From 3D Reconstruction to Recognition, Stanford
  2. (2020.09 ~ 2021.01) CS224d: Deep Learning for Natural Language Processing, Stanford
  3. (2020.07 ~ 2020.09) CS109: Probability for Computer Scientists, Stanford
  4. (2020.06 ~ 2019.09) CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

Skills

  • Python
    • DL & ML library : Pytorch, Scikit-learn, etc
    • Data processing library : Pandas, Numpy, etc
    • CV library : mmcv, cv2, etc
  • MMDetection, MMRotate, MMSelfSup
  • C/C++
  • Linux
  • Git